方程进阶:参数之惑
随着学子们对一元二次方程的掌握日益熟练,戴浩文决定给他们带来更具挑战性的内容。
一天,课堂上,戴浩文说道:“同学们,经过这段时间的学习,大家对一元二次方程已经有了不错的理解和运用。
今天,我们来探讨一些更复杂的情况,比如含参数的一元二次方程。”
学子们顿时全神贯注,眼神中透露出期待和一丝紧张。
戴浩文在黑板上写下一个方程:ax2+bx+c=0(a≠0,a为参数),然后问道:“大家想想,如果a的取值不同,这个方程的解会有怎样的变化?”
一位学子站起来说:“先生,如果a大于0,抛物线开口向上;如果a小于0,抛物线开口向下。”
戴浩文点头表示肯定:“很好,那对于方程的根的情况呢?”
这时,另一位学子回答:“可以通过判别式b2-4ac来判断,当它大于0时有两个不同的实根,等于0时有两个相同的实根,小于0时没有实根。”
戴浩文微笑着说:“非常正确。
那我们来看一个具体的例子,若方程x2+2ax+1=0有两个不同的实根,求a的取值范围。”
学子们纷纷低头思考,开始动笔计算。
过了一会儿,李华举手说道:“先生,由判别式可得,(2a)2-4大于0,解得a大于1或a小于-1。”
戴浩文称赞道:“李华解得很对。
那如果我们再加上条件,说这两个实根都大于0,又该如何求解呢?”
课堂上陷入了短暂的沉默,学子们都在绞尽脑汁地思考。
这时,一位平时不太起眼的学子站起来说:“先生,根据韦达定理,两根之和等于-ba,两根之积等于ca。
所以在这个方程中,两根之和为-2a大于0,两根之积为1大于0,可以得到a小于0。
结合前面判别式的结果,所以a的取值范围是a小于-1。”
戴浩文眼中闪过惊喜:“这位同学思考得很深入,非常好!”
接下来,戴浩文又给出了几个类似的含参数的方程,让学子们分组讨论。
讨论声在教室里此起彼伏,学子们各抒己见,气氛热烈。
“我们组觉得应该先考虑判别式,再结合韦达定理。”
少年张宵,惨遭家族诬陷,嫡长孙掠夺血脉。垂死之际,打开神秘天宝—太极八卦图,得神秘断剑。从此觉醒无上剑道天赋,横扫百族,威压万界。登顶剑道之巅!各位书友要是觉得剑道圣尊还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!剑道圣尊...
科技图书馆科学的至高境,就是神学一次意外的救人,让陈默获得收藏着无尽科技技术的科技图书馆,故事从此开始...
穿越诡异与神秘复苏的玄幻地球世界,意外获得联通诸天世界的迷雾空间。与无尽强者相见面。苏寒看着迷雾空间内,和自己一起开会的众多大佬,陷入了沉思。今天是隐晦一点告诉白胡子,他的儿子未来会干死他。还是和宇...